
by

@pkrumins
Peteris Krumins

peter@catonmat.net
http://www.catonmat.net

good coders code, great reuse

http://twitter.com/pkrumins
mailto:peter@catonmat.net
http://www.catonmat.net

Contents

Contents i

Preface vii

1 Introduction 1
1.1 Sed One-Liners . 1

2 Line Spacing 7
2.1 Double-space a file . 7
2.2 Double-space a file which already has blank lines in it 7
2.3 Triple-space a file . 8
2.4 Undo double-spacing . 8
2.5 Insert a blank line above every line that matches "regex" . . 9
2.6 Insert a blank line below every line that matches "regex" . . 10
2.7 Insert a blank line above and below every line that matches

"regex" . 10
2.8 Join all lines . 10
2.9 Duplicate all lines . 11

3 Line Numbering 12
3.1 Number each line of a file (named filename) 12
3.2 Number each line of a file (named filename) and right align

the number . 13
3.3 Number each non-empty line of a file (called filename) . . . 14
3.4 Count the number of lines in a file (emulates "wc -l") 15

4 Text Conversion and Substitution 16
4.1 Convert DOS/Windows newlines (CRLF) to Unix newlines

(LF) . 16

i

CONTENTS ii

4.2 Another way to convert DOS/Windows newlines to Unix
newlines . 16

4.3 Yet another way to convert DOS/Windows newlines to Unix
newlines . 17

4.4 Convert Unix newlines (LF) to DOS/Windows newlines (CRLF) 17
4.5 Another way to convert Unix newlines to DOS/Windows

newlines . 17
4.6 Convert Unix newlines to DOS/Windows newlines from DOS/Win-

dows . 18
4.7 Another way to convert Unix newlines to DOS/Windows

newlines from DOS/Windows 18
4.8 Delete leading whitespace (tabs and spaces) from each line . 19
4.9 Delete trailing whitespace (tabs and spaces) from each line . 19
4.10 Delete both leading and trailing whitespace from each line

(trim) . 19
4.11 Insert five blank spaces at the beginning of each line 20
4.12 Align lines right on a 79-column width 20
4.13 Center all text in the middle of 79-column width 21
4.14 Substitute (find and replace) the 4th occurrence of "foo" with

"bar" on each line . 22
4.15 Substitute (find and replace) all occurrence of "foo" with

"bar" on each line . 22
4.16 Substitute (find and replace) the first occurrence of a re-

peated occurrence of "foo" with "bar" 22
4.17 Substitute (find and replace) only the last occurrence of "foo"

with "bar" . 23
4.18 Substitute all occurrences of "foo" with "bar" on all lines

that contain "baz" . 24
4.19 Substitute all occurrences of "foo" with "bar" on all lines

that do not contain "baz" 24
4.20 Change text "scarlet", "ruby" or "puce" to "red" 25
4.21 Reverse order of lines (emulate "tac" Unix command) 25
4.22 Reverse a line (emulates "rev" Unix command) 27
4.23 Join pairs of lines side-by-side (emulates "paste" Unix com-

mand) . 28
4.24 Append a line to the next if it ends with a backslash 28
4.25 Append a line to the previous if it starts with an equal sign . 29
4.26 Digit group (commify) a numeric string 30

CONTENTS iii

4.27 Add commas to numbers with decimal points and minus signs 31
4.28 Add a blank line after every five lines 32
4.29 Uppercase all letters of every line 33
4.30 Uppercase the first word of every line 33
4.31 Lowercase all letters of every line 33
4.32 Lowercase the first letter of every line 33
4.33 Duplicate every word on every line 34
4.34 Another way to duplicate every word on every line 34
4.35 Remove all punctuation from every line 35
4.36 ROT13 encode every line . 36

5 Selective Printing of Certain Lines 37
5.1 Print the first 10 lines of a file (emulates "head -10") 37
5.2 Print the first line of a file (emulates "head -1") 37
5.3 Print the last 10 lines of a file (emulates "tail -10") 38
5.4 Print the last 2 lines of a file (emulates "tail -2") 38
5.5 Print the last line of a file (emulates "tail -1") 39
5.6 Print next-to-the-last line of a file 39
5.7 Print only the lines that match a regular expression (emulates

"grep") . 41
5.8 Print only the lines that do not match a regular expression

(emulates "grep -v") . 41
5.9 Print the line before regexp, but not the line containing the

regexp . 42
5.10 Print the line after regexp, but not the line containing the

regexp . 43
5.11 Print one line before and after regexp. Also print the line

matching regexp and its line number. (emulates "grep -A1
-B1") . 43

5.12 Grep for "AAA" and "BBB" and "CCC" in any order 44
5.13 Grep for "AAA" or "BBB", or "CCC" in any order 44
5.14 Grep for "AAA" and "BBB" and "CCC" in that order . . . 45
5.15 Print the paragraph that contains "AAA" 46
5.16 Print a paragraph if it contains "AAA" and "BBB" and

"CCC" in any order . 46
5.17 Print a paragraph if it contains "AAA" or "BBB" or "CCC" 47
5.18 Print only the lines that are 65 characters in length or more 47
5.19 Print only the lines that are less than 65 chars 48

CONTENTS iv

5.20 Print section of a file from a regex to end of file 48
5.21 Print lines 8-12 (inclusive) of a file 48
5.22 Print line number 52 . 49
5.23 Beginning at line 3, print every 7th line 49
5.24 Print section of lines between two regular expressions (inclu-

sive) . 50
5.25 Print lines that contain only printable ASCII characters . . . 50

6 Selective Deletion of Certain Lines 51
6.1 Delete all lines in the file between two regular expressions . . 51
6.2 Delete duplicate, consecutive lines from a file (emulates "uniq") 52
6.3 Delete duplicate, nonconsecutive lines from a file 54
6.4 Delete all lines except duplicate consecutive lines (emulates

"uniq -d") . 56
6.5 Delete the first 10 lines of a file 57
6.6 Delete the last line of a file 58
6.7 Delete the last 2 lines of a file 58
6.8 Delete the last 10 lines of a file 58
6.9 Delete every 8th line . 59
6.10 Delete lines that match a regular expression pattern 60
6.11 Delete all blank lines in a file (emulates "grep ’.’") 60
6.12 Delete all consecutive blank lines from a file (emulates "cat

-s") . 61
6.13 Delete all consecutive blank lines from a file except the first

two . 61
6.14 Delete all leading blank lines at the top of a file 62
6.15 Delete all trailing blank lines at the end of a file 62
6.16 Delete the last line of each paragraph 63

7 Special Sed Applications 64
7.1 Print Usenet/HTTP/Email message header 64
7.2 Print Usenet/HTTP/Email message body 65
7.3 Extract subject from an email message 65
7.4 Extract sender information from an email message 65
7.5 Extract email address from a string 66
7.6 Add a leading angle bracket and space to each line (quote an

email message) . 66

CONTENTS v

7.7 Delete leading angle bracket from each line (unquote an email
message) . 66

7.8 Strip all HTML tags . 67
7.9 Remove nroff overstrikes . 67
7.10 Extract the IP address from ifconfig output 68

A Sed Commands 69
A.1 The "=" command . 69
A.2 The "a" command . 70
A.3 The "b" command . 70
A.4 The "c" command . 71
A.5 The "d" command . 71
A.6 The "D" command . 72
A.7 The "g" command . 72
A.8 The "G" command . 72
A.9 The "h" command . 72
A.10 The "H" command . 73
A.11 The "i" command . 73
A.12 The "n" command . 73
A.13 The "N" command . 74
A.14 The "p" command . 74
A.15 The "P" command . 74
A.16 The "q" command . 75
A.17 The "r" command . 75
A.18 The "s" command . 75
A.19 The "t" command . 75
A.20 The "w" command . 76
A.21 The "x" command . 76
A.22 The "y" command . 76
A.23 The ":" command . 77

B Addresses and Ranges 78
B.1 Single Numeric Address . 78
B.2 Single Regex Address . 78
B.3 Pair of Numeric Addresses 79
B.4 Pair of Regex Addresses . 79
B.5 Special Address $. 79
B.6 Stepping Address . 80

CONTENTS vi

B.7 Match N Lines After the Address 80
B.8 Combining Addresses . 80

C Debugging sed Scripts with sed-sed 81

Index 88

Preface

Thanks!
Thank you for purchasing my "Sed One-Liners Explained" e-book! This is
my second e-book and I based it on the "Famous Sed One-Liners Explained"
article series that I wrote on my www.catonmat.net blog. I went through all
the one-liners in the articles, improved them, added 8 new ones (bringing
the total count to 100), fixed a lot of mistakes, added an Introduction
to sed one-liners and three new chapters. The three new chapters are Sed
commands that summarizes all the sed commands, Sed addresses and ranges
that summarizes the sed ranges, and Debugging sed scripts with sed-sed
that shows how useful the sed-sed utility is.

You might wonder why I called the article series "famous"? Well, be-
cause I based the articles on the famous sed1line.txt file by Eric Pement.
This file has been circulating around Unix newsgroups and forums for years
and it’s very popular among Unix programmers. That’s how I actually re-
ally learned sed myself. I went through all the one-liners in this file, tried
them out and endeavored to understand exactly how they work. Then I
decided that it would be a good idea to explain them on my blog, which I
did, and after that I thought, why not turn it into a book? That’s how I
ended up writing this book.

As I mentioned, this is my second e-book. My first e-book is "Awk
One-Liners Explained" which I based on Eric Pement’s awk1line.txt file. I
really learned Awk from this file, too.

My third e-book is now in development. It’s "Perl One-Liners Ex-
plained". The Perl book will be based on my "Famous Perl One-Liners
Explained" article series. I was so inspired by sed1line.txt and awk1line.txt
files that I decided to create my own perl1line.txt file. I am still working
on it but I am one chapter away from finishing it. If you’re interested,
subscribe to my blog, follow me on Twitter or follow me on Google+. That

vii

http://www.catonmat.net/blog/sed-one-liners-explained-part-one/
http://www.catonmat.net/
http://sedsed.sourceforge.net/
http://sed.sourceforge.net/sed1line.txt
http://catonmat.net/blog/awk-book
http://catonmat.net/blog/awk-book
http://www.pement.org/awk/awk1line.txt
http://catonmat.net/blog/perl-book/
http://catonmat.net/blog/perl-book/
http://www.catonmat.net/blog/perl-one-liners-explained-part-one/
http://www.catonmat.net/blog/perl-one-liners-explained-part-one/
http://www.catonmat.net/feed/
http://twitter.com/pkrumins
http://google.com/profiles/peteris.krumins

PREFACE viii

way you’ll be the first to know when I publish perl1line.txt and my next
book!

Credits
I’d like to thank Eric Pement who made the famous sed1line.txt file that
I learned Sed from and that I based this book on. I’d also like to thank
waldner and DJ Mills from #sed channel on FreeNode IRC network for
always helping me with sed. Also thanks goes to Madars Virza for the book
review, Przemysław Pawełczyk for teaching me LaTeX, Abraham Alhashmy
for advice on how to improve the design of the book, Blake Sitney for proof-
reading the book, everyone who commented on my blog while I was writing
the sed one-liners article series, and everyone else who helped me with sed
and this book.

http://sed.sourceforge.net/sed1line.txt
http://backreference.org/
http://madars.org
http://przemoc.net
http://http://www.programmersmecca.net/
http://www.marigoldtech.com/
http://www.catonmat.net

One

Introduction

1.1 Sed One-Liners
Mastering sed can be reduced to understanding and manipulating the four
spaces of sed. These four spaces are:

• Input Stream

• Pattern Space

• Hold Buffer

• Output Stream

Think about the spaces this way – sed reads the input stream and pro-
duces the output stream. Internally it has the pattern space and the hold
buffer. Sed reads data from the input stream until it finds the newline
character \n. Then it places the data read so far, without the newline, into
the pattern space. Most of the sed commands operate on the data in the
pattern space. The hold buffer is there for your convenience. Think about
it as temporary buffer. You can copy or exchange data between the pattern
space and the hold buffer. Once sed has executed all the commands, it
outputs the pattern space and adds a \n at the end.

It’s possible to modify the behavior of sed with the -n command line
switch. When -n is specified, sed doesn’t output the pattern space and you
have to explicitly print it with either p or P commands.

Let’s look at several examples to understand the four spaces and sed.
You’ll learn much more about the sed commands and spaces as you work
through the chapters of the book. These are just examples to illustrate
what sed looks like and what it’s all about.

Here is the simplest possible sed program:

1

CHAPTER 1. INTRODUCTION 2

sed 's/foo/bar/'

This program replaces text "foo" with "bar" on every line. Here is how
it works. Suppose you have a file with these lines:

abc

foo

123-foo-456

Sed opens the file as the input stream and starts reading the data. After
reading "abc" it finds a newline \n. It places the text "abc" in the pattern
space and now it applies the s/foo/bar/ command. Since we have "abc"
in the pattern space and there is no "foo" anywhere, sed does nothing to
the pattern space. At this moment sed has executed all the commands (in
this case just one). The default action when all the commands have been
executed is to print the pattern space, followed by newline. So the output
from the first line is "abc\n".

Now sed reads in the second line "foo" and executes s/foo/bar/. This
replaces "foo" with "bar". The pattern space now contains just "bar". The
end of the script has been reached and sed prints out the pattern space,
followed by newline. The output from the second line is "bar\n".

Now the 3rd line is read in. The pattern space is now "123-foo-456".
Since there is "foo" in the text, the s/foo/bar/ is successful and the pattern
space is now "123-bar-456". The end is reached and sed prints the pattern
space. The output is "123-bar-456\n".

All the lines of the input have been read at this moment and sed exits.
The output from running the script on our example file is:

abc

bar

123-bar-456

In this example we never used the hold buffer because there was no need
for temporary storage.

Before we look at an example with temporary storage, let’s take a look
at three command line switches – -n, -e and -i. First -n.

If you specify -n to sed, like this:

CHAPTER 1. INTRODUCTION 3

sed -n 's/foo/bar/'

Then sed will no longer print the pattern space when it reaches the end
of the script. So if you run this program on our sample file above, there
will be no output. You must use sed’s p command to force sed to print the
line:

sed -n 's/foo/bar/; p'

As you can see, sed commands are separated by the ; character. You
can also use -e switch to separate the commands:

sed -n -e 's/foo/bar/' -e 'p'

It’s the same as if you used ;. Next, let’s take a look at the -i command
line argument. This one forces sed to do in-place editing of the file, meaning
it reads the contents of the file, executes the commands, and places the new
contents back in the file.

Here is an example. Suppose you have a file called "users", with the
following content:

pkrumins:hacker

esr:guru

rms:geek

And you wish to replace the ":" symbol with ";" in the whole file. Then
you can do it as easily as:

sed -i 's/:/;/' users

It will silently execute the s/:/;/ command on all lines in the file and
do all substitutions. Be very careful when using -i as it’s destructive
and it’s not reversible! It’s always safer to run sed without -i, and then
replace the file yourself.

Actually, before we look at the hold buffer, let’s take a look at addresses
and ranges. Addresses allow you to restrict sed commands to certain lines,
or ranges of lines.

CHAPTER 1. INTRODUCTION 4

The simplest address is a single number that limits sed commands to
the given line number:

sed '5s/foo/bar/'

This limits the s/foo/bar/ only to the 5th line of file or input stream.
So if there is a "foo" on the 5th line, it will be replaced with "bar". No
other lines will be touched.

The addresses can be also inverted with the ! after the address. To
match all lines that are not the 5th line (lines 1-4, plus lines 6-...), do this:

sed '5!s/foo/bar/'

The inversion can be applied to any address.
Next, you can also limit sed commands to a range of lines by specifying

two numbers, separated by a comma:

sed '5,10s/foo/bar/'

In this one-liner the s/foo/bar/ is executed only on lines 5 – 10, in-
clusive. Here is a quick, useful one-liner. Suppose you want to print lines
5 – 10 in the file. You can first disable implicit line printing with the -n

command line switch, and then use the p command on lines 5 – 10:

sed -n '5,10p'

This will execute the p command only on lines 5 – 10. No other lines
will be output. Pretty neat, isn’t it?

There is a special address $ that matches the last line of the file. Here
is an example that prints the last line of the file:

sed -n '$p'

As you can see, the p command has been limited to $, which is the last
line of input.

Next, there is also a single regular expression address match like this
/regex/. If you specify a regex before a command, then the command will
only get executed on lines that match the regex. Check this out:

CHAPTER 1. INTRODUCTION 5

sed -n '/a+b+/p'

Here the p command will get called only on lines that match a+b+ reg-
ular expression, which means one or more letters "a" followed by one or
more letters "b". For example, it prints lines like "ab", "aab", "aaabbbbb",
"foo-123-ab", etc.

There is also an expression to match a range between two regexes. Here
is an example,

sed '/foo/,/bar/d'

This one-liner matches all lines between the first line that matches
"/foo/" regex and the first line that matches "/bar/" regex, inclusive. It
applies the d command that stands for delete. In other words, it deletes a
range of lines between the first line that matches "/foo/" and the first line
after "/foo/" that matches "/bar/", inclusive.

Now let’s take a look at the hold buffer. Suppose you have a problem
where you want to print the line before the line that matches a regular
expression. How do you do this? If sed didn’t have a hold buffer, things
would be tough, but with hold buffer we can always save the current line
to the hold buffer, and then let sed read in the next line. Now if the next
line matches the regex, we would just print the hold buffer, which holds the
previous line. Easy, right?

The command for copying the current pattern space to the hold buffer
is h. The command for copying the hold buffer back to the pattern space
is g. The command for exchanging the hold buffer and the pattern space is
x. We just have to choose the right commands to solve this problem. Here
is the solution:

sed -n '/regex/{x;p;x}; h'

It works this way – every line gets copied to the hold buffer with the h

command at the end of the script. However, for every line that matches the
/regex/, we exchange the hold buffer with the pattern space by using the
x command, print it with the p command, and then exchange the buffers
back, so that if the next line matches the /regex/ again, we could print the
current line.

CHAPTER 1. INTRODUCTION 6

Also notice the command grouping. Several commands can be grouped
and executed only for a specific address or range. In this one-liner the
command group is {x;p;x} and it gets executed only if the current line
matches /regex/.

Note that this one-liner doesn’t work if it’s the first line of the input
matches /regex/. To fix this, we can limit the p command to all lines that
are not the first line with the 1! inverted address match:

sed -n '/regex/{x;1!p;x}; h'

Notice the 1!p. This says – call the p command on all the lines that are
not the 1st line. This prevents anything to be printed in case the first line
matches /regex/.

I think that this is a great introduction to sed one-liners that covers
the most important concepts in sed. Overall this book contains exactly 100
well-explained one-liners. Once you work through them, you’ll have rewired
your brain to "think in sed". In other words, you’ll have learned how to
manipulate the pattern space, the hold buffer and you’ll know when to print
the data to get the results that you need. Enjoy this book!

Two

Line Spacing

2.1 Double-space a file

sed G

This sed one-liner uses the G command. The G command appends a
newline \n followed by the contents of the hold buffer to the pattern space.
In this one-liner the hold buffer is empty all the time (only three commands
- h, H and x modify the hold buffer), so we end up simply appending a
newline to the pattern space for every line. Once all the commands have
been processed (in this case just the G command), sed sends the contents of
pattern space to the output stream followed by a newline. So there we have
it, each line now ends with two newlines – one added by the G command
and the other implicitly by sed’s printing mechanism. File has been double
spaced.

2.2 Double-space a file which already has
blank lines in it

sed '/^$/d;G'

Sed allows the commands to be restricted only to certain lines. This
one-liner operates only on lines that match the regular expression /^$/.
But which are those? Those are the empty lines, because only the empty
lines have a property that the beginning of the line ^ is the same as the end
of the line $. Remember that before doing the regular expression match sed
pushes the input line to pattern space. When doing it, sed strips the trailing

7

