
The RFB Protocol

Tristan Richardson
RealVNC Ltd

(formerly of Olivetti Research Ltd / AT&T Labs Cambridge)∗

Version 3.8
Last updated 26 November 2010

Contents

1 Introduction 3

2 Display Protocol 3

3 Input Protocol 4

4 Representation of pixel data 4

5 Protocol extensions 5

6 Protocol Messages 5

6.1 Handshaking Messages . 7

6.1.1 ProtocolVersion . 8

6.1.2 Security . 9

6.1.3 SecurityResult . 11

6.2 Security Types . 12

6.2.1 None . 13

6.2.2 VNC Authentication . 14

6.3 Initialisation Messages . 15

6.3.1 ClientInit . 16

6.3.2 ServerInit . 17

6.4 Client to server messages . 19

∗James Weatherall, Andy Harter and Ken Wood also helped in the design of the RFB protocol

1

CONTENTS 2

6.4.1 SetPixelFormat . 20

6.4.2 SetEncodings . 21

6.4.3 FramebufferUpdateRequest 22

6.4.4 KeyEvent . 23

6.4.5 PointerEvent . 25

6.4.6 ClientCutText . 26

6.5 Server to client messages . 27

6.5.1 FramebufferUpdate . 28

6.5.2 SetColourMapEntries . 29

6.5.3 Bell . 30

6.5.4 ServerCutText . 31

6.6 Encodings . 32

6.6.1 Raw encoding . 33

6.6.2 CopyRect encoding . 34

6.6.3 RRE encoding . 35

6.6.4 Hextile encoding . 36

6.6.5 ZRLE encoding . 38

6.7 Pseudo-encodings . 41

6.7.1 Cursor pseudo-encoding . 42

6.7.2 DesktopSize pseudo-encoding 43

1 INTRODUCTION 3

1 Introduction

RFB (“remote framebuffer”) is a simple protocol for remote access to graphical user
interfaces. Because it works at the framebuffer level it is applicable to all window-
ing systems and applications, including X11, Windows and Macintosh. RFB is the
protocol used in VNC (Virtual Network Computing).

The remote endpoint where the user sits (i.e. the display plus keyboard and/or pointer)
is called the RFB client or viewer. The endpoint where changes to the framebuffer
originate (i.e. the windowing system and applications) is known as the RFB server.

RFB Server RFB Client

RFB
Protocol

RFB is truly a “thin client” protocol. The emphasis in the design of the RFB protocol
is to make very few requirements of the client. In this way, clients can run on the
widest range of hardware, and the task of implementing a client is made as simpleas
possible.

The protocol also makes the client stateless. If a client disconnects from agiven server
and subsequently reconnects to that same server, the state of the user interface is pre-
served. Furthermore, a different client endpoint can be used to connect to the same
RFB server. At the new endpoint, the user will see exactly the same graphical user
interface as at the original endpoint. In effect, the interface to the user’s applica-
tions becomes completely mobile. Wherever suitable network connectivity exists, the
user can access their own personal applications, and the state of these applications is
preserved between accesses from different locations. This provides the user with a
familiar, uniform view of the computing infrastructure wherever they go.

2 Display Protocol

The display side of the protocol is based around a single graphics primitive: “put
a rectangle of pixel data at a given x,y position”. At first glance this might seem

3 INPUT PROTOCOL 4

an inefficient way of drawing many user interface components. However, allowing
various different encodings for the pixel data gives us a large degree of flexibility in
how to trade off various parameters such as network bandwidth, client drawing speed
and server processing speed.

A sequence of these rectangles makes aframebuffer update(or simply update). An
update represents a change from one valid framebuffer state to another, so in some
ways is similar to a frame of video. The rectangles in an update are usually disjoint
but this is not necessarily the case.

The update protocol is demand-driven by the client. That is, an update is only sent
from the server to the client in response to an explicit request from the client. This
gives the protocol an adaptive quality. The slower the client and the network are, the
lower the rate of updates becomes. With typical applications, changes to the same area
of the framebuffer tend to happen soon after one another. With a slow client and/or
network, transient states of the framebuffer can be ignored, resulting inless network
traffic and less drawing for the client.

3 Input Protocol

The input side of the protocol is based on a standard workstation model ofa keyboard
and multi-button pointing device. Input events are simply sent to the server bythe
client whenever the user presses a key or pointer button, or wheneverthe pointing
device is moved. These input events can also be synthesised from other non-standard
I/O devices. For example, a pen-based handwriting recognition engine might generate
keyboard events.

4 Representation of pixel data

Initial interaction between the RFB client and server involves a negotiation ofthe for-
mat andencodingwith which pixel data will be sent. This negotiation has been de-
signed to make the job of the client as easy as possible. The bottom line is that the
server must always be able to supply pixel data in the form the client wants.However
if the client is able to cope equally with several different formats or encodings, it may
choose one which is easier for the server to produce.

Pixel format refers to the representation of individual colours by pixel values. The
most common pixel formats are 24-bit or 16-bit “true colour”, where bit-fields within
the pixel value translate directly to red, green and blue intensities, and 8-bit“colour
map” where an arbitrary mapping can be used to translate from pixel valuesto the
RGB intensities.

Encodingrefers to how a rectangle of pixel data will be sent on the wire. Every rectan-
gle of pixel data is prefixed by a header giving the X,Y position of the rectangle on the
screen, the width and height of the rectangle, and anencoding typewhich specifies the
encoding of the pixel data. The data itself then follows using the specified encoding.

The encoding types defined at present areRaw, CopyRect, RRE, HextileandZRLE. In

5 PROTOCOL EXTENSIONS 5

practice we normally use only theZRLE, HextileandCopyRectencodings since they
provide the best compression for typical desktops. See section 6.6 for adescription of
each of the encodings.

5 Protocol extensions

There are a number of ways in which the protocol can be extended:

New encodings A new encoding type can be added to the protocol relatively eas-
ily whilst maintaining compatibility with existing clients and servers. Existing
servers will simply ignore requests for a new encoding which they don’t support.
Existing clients will never request the new encoding so will never see rectangles
encoded that way.

Pseudo encodings In addition to genuine encodings, a client can request a “pseudo-
encoding” to declare to the server that it supports a certain extension to the
protocol. A server which does not support the extension will simply ignorethe
pseudo-encoding. Note that this means the client must assume that the server
does not support the extension until it gets some extension-specific confirmation
from the server. See section 6.7 for a description of current pseudo-encodings.

New security types Adding a new security type gives the ultimate flexibility in mod-
ifying the behaviour of the protocol without sacrificing compatibility with exist-
ing clients and servers. A client and server which agree on a new security type
can effectively talk whatever protocol they like after that - it doesn’t necessarily
have to be anything like the RFB protocol.

Under no circumstances should you use a different protocol version number. Pro-
tocol versions are defined by the maintainers of the RFB protocol, RealVNCLtd. If
you use a different protocol version number then you are not RFB / VNC compati-
ble. To ensure that you stay compatible with the RFB protocol it is important thatyou
contact RealVNC Ltd to make sure that your encoding types and security types do not
clash. Please see the RealVNC website at http://www.realvnc.com for details ofhow
to contact us; sending a message to the VNC mailing list is the best way to get in touch
and let the rest of the VNC community know.

6 Protocol Messages

The RFB protocol can operate over any reliable transport, either byte-stream or message-
based. Conventionally it is used over a TCP/IP connection. There are three stages to
the protocol. First is the handshaking phase, the purpose of which is to agree upon the
protocol version and the type of security to be used. The second stage isan initialisa-
tion phase where the client and server exchangeClientInit andServerInitmessages.
The final stage is the normal protocol interaction. The client can send whichever

6 PROTOCOL MESSAGES 6

messages it wants, and may receive messages from the server as a result. All these
messages begin with amessage-typebyte, followed by any message-specific data.

The following descriptions of protocol messages use the basic typesU8, U16, U32,
S8, S16, S32. These represent respectively 8, 16 and 32-bit unsigned integers and
8, 16 and 32-bit signed integers. All multiple byte integers (other than pixel values
themselves) are in big endian order (most significant byte first).

The typePIXEL is taken to mean a pixel value ofbytesPerP ixel bytes, where8 ×

bytesPerP ixel is the number ofbits-per-pixelas agreed by the client and server –
either in theServerInitmessage (section 6.3.2) or aSetPixelFormatmessage (section
6.4.1).

6.1 HANDSHAKING MESSAGES 7

6.1 Handshaking Messages

6.1 HANDSHAKING MESSAGES 8

6.1.1 ProtocolVersion

Handshaking begins by the server sending the client aProtocolVersionmessage. This
lets the client know which is the highest RFB protocol version number supported by
the server. The client then replies with a similar message giving the version number of
the protocol which should actually be used (which may be different to that quoted by
the server). A client should never request a protocol version higherthan that offered
by the server. It is intended that both clients and servers may provide somelevel of
backwards compatibility by this mechanism.

The only published protocol versions at this time are 3.3, 3.7, 3.8 (version 3.5 was
wrongly reported by some clients, but this should be interpreted by all servers as 3.3).
Addition of a new encoding or pseudo-encoding type does not require achange in
protocol version, since a server can simply ignore encodings it does not understand.

The ProtocolVersionmessage consists of 12 bytes interpreted as a string of ASCII
characters in the format"RFB xxx.yyy\n" wherexxx andyyy are the major and
minor version numbers, padded with zeros.

No. of bytes Value
12 "RFB 003.003\n" (hex 52 46 42 20 30 30 33 2e 30 30 33 0a)

or

No. of bytes Value
12 "RFB 003.007\n" (hex 52 46 42 20 30 30 33 2e 30 30 37 0a)

or

No. of bytes Value
12 "RFB 003.008\n" (hex 52 46 42 20 30 30 33 2e 30 30 38 0a)

6.1 HANDSHAKING MESSAGES 9

6.1.2 Security

Once the protocol version has been decided, the server and client must agree on the
type of security to be used on the connection.

Version 3.7 onwards The server lists the security types which it supports:

No. of bytes Type [Value] Description
1 U8 number-of-security-types
number-of-security-typesU8 array security-types

If the server listed at least one valid security type supported by the client, the
client sends back a single byte indicating which security type is to be used on
the connection:

No. of bytes Type [Value] Description
1 U8 security-type

If number-of-security-typesis zero, then for some reason the connection failed
(e.g. the server cannot support the desired protocol version). Thisis followed
by a string describing the reason (where a string is specified as a length followed
by that many ASCII characters):

No. of bytes Type [Value] Description
4 U32 reason-length
reason-length U8 array reason-string

The server closes the connection after sending thereason-string.

Version 3.3 The server decides the security type and sends a single word:

No. of bytes Type [Value] Description
4 U32 security-type

Thesecurity-typemay only take the value 0, 1 or 2. A value of 0 means that the
connection has failed and is followed by a string giving the reason, as described
above.

The security types defined in this document are:

Number Name
0 Invalid
1 None
2 VNC Authentication

Other registered security types are:

6.1 HANDSHAKING MESSAGES 10

Number Name
5 RA2
6 RA2ne
16 Tight
17 Ultra
18 TLS
19 VeNCrypt
20 GTK-VNC SASL
21 MD5 hash authentication
22 Colin Dean xvp

Once thesecurity-typehas been decided, data specific to thatsecurity-typefollows
(see section 6.2 for details). At the end of the security handshaking phase, the protocol
normally continues with theSecurityResultmessage.

Note that after the security handshaking phase, it is possible that furtherprotocol data
is over an encrypted or otherwise altered channel.

6.1 HANDSHAKING MESSAGES 11

6.1.3 SecurityResult

The server sends a word to inform the client whether the security handshaking was
successful.

No. of bytes Type [Value] Description
4 U32 status:

0 OK
1 failed

If successful, the protocol passes to the initialisation phase (section 6.3).

Version 3.8 onwards If unsuccessful, the server sends a string describing the reason
for the failure, and then closes the connection:

No. of bytes Type [Value] Description
4 U32 reason-length
reason-length U8 array reason-string

Version 3.3 and 3.7 If unsuccessful, the server closes the connection.

6.2 SECURITY TYPES 12

6.2 Security Types

6.2 SECURITY TYPES 13

6.2.1 None

No authentication is needed and protocol data is to be sent unencrypted.

Version 3.8 onwards The protocol continues with theSecurityResultmessage.

Version 3.3 and 3.7 The protocol passes to the initialisation phase (section 6.3).

6.2 SECURITY TYPES 14

6.2.2 VNC Authentication

VNC authentication is to be used and protocol data is to be sent unencrypted. The
server sends a random 16-byte challenge:

No. of bytes Type [Value] Description
16 U8 challenge

The client encrypts the challenge with DES, using a password supplied by the user as
the key, and sends the resulting 16-byte response:

No. of bytes Type [Value] Description
16 U8 response

The protocol continues with theSecurityResultmessage.

6.3 INITIALISATION MESSAGES 15

6.3 Initialisation Messages

Once the client and server are sure that they’re happy to talk to one another using the
agreed security type, the protocol passes to the initialisation phase. The client sends a
ClientInit message followed by the server sending aServerInitmessage.

6.3 INITIALISATION MESSAGES 16

6.3.1 ClientInit

No. of bytes Type [Value] Description
1 U8 shared-flag

Shared-flagis non-zero (true) if the server should try to share the desktop by leaving
other clients connected, zero (false) if it should give exclusive access to this client by
disconnecting all other clients.

6.3 INITIALISATION MESSAGES 17

6.3.2 ServerInit

After receiving theClientInit message, the server sends aServerInitmessage. This
tells the client the width and height of the server’s framebuffer, its pixel format and the
name associated with the desktop:

No. of bytes Type [Value] Description
2 U16 framebuffer-width
2 U16 framebuffer-height
16 PIXEL_FORMAT server-pixel-format
4 U32 name-length
name-length U8 array name-string

wherePIXEL_FORMAT is

No. of bytes Type [Value] Description
1 U8 bits-per-pixel
1 U8 depth
1 U8 big-endian-flag
1 U8 true-colour-flag
2 U16 red-max
2 U16 green-max
2 U16 blue-max
1 U8 red-shift
1 U8 green-shift
1 U8 blue-shift
3 padding

Server-pixel-formatspecifies the server’s natural pixel format. This pixel format will
be used unless the client requests a different format using theSetPixelFormatmessage
(section 6.4.1).

Bits-per-pixelis the number of bits used for each pixel value on the wire. This must
be greater than or equal to thedepthwhich is the number of useful bits in the pixel
value. Currentlybits-per-pixelmust be 8, 16 or 32 — less than 8-bit pixels are not yet
supported.Big-endian-flagis non-zero (true) if multi-byte pixels are interpreted as big
endian. Of course this is meaningless for 8 bits-per-pixel.

If true-colour-flagis non-zero (true) then the last six items specify how to extract the
red, green and blue intensities from the pixel value.Red-maxis the maximum red
value (= 2n − 1 wheren is the number of bits used for red). Note this value is always
in big endian order.Red-shiftis the number of shifts needed to get the red value in a
pixel to the least significant bit.Green-max, green-shiftandblue-max, blue-shiftare
similar for green and blue. For example, to find the red value (between 0 andred-max)
from a given pixel, do the following:

• Swap the pixel value according tobig-endian-flag(e.g. ifbig-endian-flagis zero
(false) and host byte order is big endian, then swap).

6.3 INITIALISATION MESSAGES 18

• Shift right byred-shift.

• AND with red-max(in host byte order).

If true-colour-flagis zero (false) then the server uses pixel values which are not directly
composed from the red, green and blue intensities, but which serve as indices into a
colour map. Entries in the colour map are set by the server using theSetColourMapEn-
triesmessage (section 6.5.2).

6.4 CLIENT TO SERVER MESSAGES 19

6.4 Client to server messages

The client to server message types defined in this document are:

Number Name
0 SetPixelFormat
2 SetEncodings
3 FramebufferUpdateRequest
4 KeyEvent
5 PointerEvent
6 ClientCutText

Other registered message types are:

Number Name
255 Anthony Liguori
254, 127 VMWare
253 gii
252 tight
251 Pierre Ossman SetDesktopSize
250 Colin Dean xvp
249 OLIVE Call Control

Note that before sending a message not defined in this document a client must have
determined that the server supports the relevant extension by receivingsome extension-
specific confirmation from the server.

6.4 CLIENT TO SERVER MESSAGES 20

6.4.1 SetPixelFormat

Sets the format in which pixel values should be sent inFramebufferUpdatemessages.
If the client does not send aSetPixelFormatmessage then the server sends pixel values
in its natural format as specified in theServerInitmessage (section 6.3.2).

If true-colour-flagis zero (false) then this indicates that a “colour map” is to be used.
The server can set any of the entries in the colour map using theSetColourMapEntries
message (section 6.5.2). Immediately after the client has sent this message the colour
map is empty, even if entries had previously been set by the server.

No. of bytes Type [Value] Description
1 U8 0 message-type
3 padding
16 PIXEL_FORMAT pixel-format

wherePIXEL_FORMAT is as described in section 6.3.2:

No. of bytes Type [Value] Description
1 U8 bits-per-pixel
1 U8 depth
1 U8 big-endian-flag
1 U8 true-colour-flag
2 U16 red-max
2 U16 green-max
2 U16 blue-max
1 U8 red-shift
1 U8 green-shift
1 U8 blue-shift
3 padding

6.4 CLIENT TO SERVER MESSAGES 21

6.4.2 SetEncodings

Sets the encoding types in which pixel data can be sent by the server. Theorder of the
encoding types given in this message is a hint by the client as to its preference (the first
encoding specified being most preferred). The server may or may not choose to make
use of this hint. Pixel data may always be sent inraw encoding even if not specified
explicitly here.

In addition to genuine encodings, a client can request “pseudo-encodings” to declare
to the server that it supports certain extensions to the protocol. A server which does not
support the extension will simply ignore the pseudo-encoding. Note that thismeans
the client must assume that the server does not support the extension untilit gets some
extension-specific confirmation from the server.

See section 6.6 for a description of each encoding and section 6.7 for the meaning of
pseudo-encodings.

No. of bytes Type [Value] Description
1 U8 2 message-type
1 padding
2 U16 number-of-encodings

followed bynumber-of-encodingsrepetitions of the following:

No. of bytes Type [Value] Description
4 S32 encoding-type

6.4 CLIENT TO SERVER MESSAGES 22

6.4.3 FramebufferUpdateRequest

Notifies the server that the client is interested in the area of the framebufferspecified
by x-position, y-position, width andheight. The server usually responds to aFrame-
bufferUpdateRequestby sending aFramebufferUpdate. Note however that a single
FramebufferUpdatemay be sent in reply to severalFramebufferUpdateRequests.

The server assumes that the client keeps a copy of all parts of the framebuffer in which
it is interested. This means that normally the server only needs to send incremental
updates to the client.

However, if for some reason the client has lost the contents of a particulararea which it
needs, then the client sends aFramebufferUpdateRequestwith incrementalset to zero
(false). This requests that the server send the entire contents of the specified area as
soon as possible. The area will not be updated using theCopyRectencoding.

If the client has not lost any contents of the area in which it is interested, then it
sends aFramebufferUpdateRequestwith incrementalset to non-zero (true). If and
when there are changes to the specified area of the framebuffer, the server will send a
FramebufferUpdate. Note that there may be an indefinite period between theFrame-
bufferUpdateRequestand theFramebufferUpdate.

In the case of a fast client, the client may want to regulate the rate at which it sends
incrementalFramebufferUpdateRequests to avoid hogging the network.

No. of bytes Type [Value] Description
1 U8 3 message-type
1 U8 incremental
2 U16 x-position
2 U16 y-position
2 U16 width
2 U16 height

6.4 CLIENT TO SERVER MESSAGES 23

6.4.4 KeyEvent

A key press or release.Down-flagis non-zero (true) if the key is now pressed, zero
(false) if it is now released. Thekey itself is specified using the “keysym” values
defined by the X Window System.

No. of bytes Type [Value] Description
1 U8 4 message-type
1 U8 down-flag
2 padding
4 U32 key

For most ordinary keys, the “keysym” is the same as the corresponding ASCII value.
For full details, see The Xlib Reference Manual, published by O’Reilly & Associates,
or see the header file<X11/keysymdef.h> from any X Window System installa-
tion. Some other common keys are:

Key name Keysym value
BackSpace 0xff08
Tab 0xff09
Return or Enter 0xff0d
Escape 0xff1b
Insert 0xff63
Delete 0xffff
Home 0xff50
End 0xff57
Page Up 0xff55
Page Down 0xff56
Left 0xff51
Up 0xff52
Right 0xff53
Down 0xff54

Key name Keysym value
F1 0xffbe
F2 0xffbf
F3 0xffc0
F4 0xffc1
... ...
F12 0xffc9
Shift (left) 0xffe1
Shift (right) 0xffe2
Control (left) 0xffe3
Control (right) 0xffe4
Meta (left) 0xffe7
Meta (right) 0xffe8
Alt (left) 0xffe9
Alt (right) 0xffea

The interpretation of keysyms is a complex area. In order to be as widely interoperable
as possible the following guidelines should be used:

• The “shift state” (i.e. whether either of the Shift keysyms are down) should only
be used as a hint when interpreting a keysym. For example, on a US keyboard
the ’#’ character is shifted, but on a UK keyboard it is not. A server with aUS
keyboard receiving a ’#’ character from a client with a UK keyboard will not
have been sent any shift presses. In this case, it is likely that the server will
internally need to “fake” a shift press on its local system, in order to get a ’#’
character and not, for example, a ’3’.

• The difference between upper and lower case keysyms is significant. This is
unlike some of the keyboard processing in the X Window System which treats
them as the same. For example, a server receiving an uppercase ’A’ keysym

6.4 CLIENT TO SERVER MESSAGES 24

without any shift presses should interpret it as an uppercase ’A’. Again this may
involve an internal “fake” shift press.

• Servers should ignore “lock” keysyms such as CapsLock and NumLockwhere
possible. Instead they should interpret each character-based keysym according
to its case.

• Unlike Shift, the state of modifier keys such as Control and Alt should be taken
as modifying the interpretation of other keysyms. Note that there are no keysyms
for ASCII control characters such as ctrl-a - these should be generated by view-
ers sending a Control press followed by an ’a’ press.

• On a viewer where modifiers like Control and Alt can also be used to generate
character-based keysyms, the viewer may need to send extra “release”events
in order that the keysym is interpreted correctly. For example, on a GermanPC
keyboard, ctrl-alt-q generates the ’@’ character. In this case, the viewer needs to
send “fake” release events for Control and Alt in order that the ’@’ character is
interpreted correctly (ctrl-alt-@ is likely to mean something completely different
to the server).

• There is no universal standard for “backward tab” in the X Window System.
On some systems shift+tab gives the keysym “ISOLeft Tab”, on others it gives
a private “BackTab” keysym and on others it gives “Tab” and applications tell
from the shift state that it means backward-tab rather than forward-tab.In the
RFB protocol the latter approach is preferred. Viewers should generate a shifted
Tab rather than ISOLeft Tab. However, to be backwards-compatible with ex-
isting viewers, servers should also recognise ISOLeft Tab as meaning a shifted
Tab.

6.4 CLIENT TO SERVER MESSAGES 25

6.4.5 PointerEvent

Indicates either pointer movement or a pointer button press or release. Thepointer is
now at (x-position, y-position), and the current state of buttons 1 to 8 are represented
by bits 0 to 7 ofbutton-maskrespectively, 0 meaning up, 1 meaning down (pressed).

On a conventional mouse, buttons 1, 2 and 3 correspond to the left, middle and right
buttons on the mouse. On a wheel mouse, each step of the wheel upwards isrepre-
sented by a press and release of button 4, and each step downwards is represented by
a press and release of button 5.

No. of bytes Type [Value] Description
1 U8 5 message-type
1 U8 button-mask
2 U16 x-position
2 U16 y-position

6.4 CLIENT TO SERVER MESSAGES 26

6.4.6 ClientCutText

The client has new ISO 8859-1 (Latin-1) text in its cut buffer. Ends of lines are repre-
sented by the linefeed / newline character (value 10) alone. No carriage-return (value
13) is needed. There is currently no way to transfer text outside the Latin-1 character
set.

No. of bytes Type [Value] Description
1 U8 6 message-type
3 padding
4 U32 length
length U8 array text

6.5 SERVER TO CLIENT MESSAGES 27

6.5 Server to client messages

The server to client message types defined in this document are:

Number Name
0 FramebufferUpdate
1 SetColourMapEntries
2 Bell
3 ServerCutText

Other registered message types are:

Number Name
255 Anthony Liguori
254, 127 VMWare
253 gii
252 tight
250 Colin Dean xvp
249 OLIVE Call Control

Note that before sending a message not defined in this document a servermust have
determined that the client supports the relevant extension by receiving some extension-
specific confirmation from the client - usually a request for a given pseudo-encoding.

6.5 SERVER TO CLIENT MESSAGES 28

6.5.1 FramebufferUpdate

A framebuffer update consists of a sequence of rectangles of pixel data which the client
should put into its framebuffer. It is sent in response to aFramebufferUpdateRequest
from the client. Note that there may be an indefinite period between theFramebuffer-
UpdateRequestand theFramebufferUpdate.

No. of bytes Type [Value] Description
1 U8 0 message-type
1 padding
2 U16 number-of-rectangles

This is followed bynumber-of-rectanglesrectangles of pixel data. Each rectangle
consists of:

No. of bytes Type [Value] Description
2 U16 x-position
2 U16 y-position
2 U16 width
2 U16 height
4 S32 encoding-type

followed by the pixel data in the specified encoding. See section 6.6 for the format of
the data for each encoding and section 6.7 for the meaning of pseudo-encodings.

6.5 SERVER TO CLIENT MESSAGES 29

6.5.2 SetColourMapEntries

When the pixel format uses a “colour map”, this message tells the client that thespec-
ified pixel values should be mapped to the given RGB intensities.

No. of bytes Type [Value] Description
1 U8 1 message-type
1 padding
2 U16 first-colour
2 U16 number-of-colours

followed bynumber-of-coloursrepetitions of the following:

No. of bytes Type [Value] Description
2 U16 red
2 U16 green
2 U16 blue

6.5 SERVER TO CLIENT MESSAGES 30

6.5.3 Bell

Ring a bell on the client if it has one.

No. of bytes Type [Value] Description
1 U8 2 message-type

6.5 SERVER TO CLIENT MESSAGES 31

6.5.4 ServerCutText

The server has new ISO 8859-1 (Latin-1) text in its cut buffer. Ends of lines are
represented by the linefeed / newline character (value 10) alone. No carriage-return
(value 13) is needed. There is currently no way to transfer text outside the Latin-1
character set.

No. of bytes Type [Value] Description
1 U8 3 message-type
3 padding
4 U32 length
length U8 array text

6.6 ENCODINGS 32

6.6 Encodings

The encodings defined in this document are:

Number Name
0 Raw
1 CopyRect
2 RRE
5 Hextile
16 ZRLE
-239 Cursor pseudo-encoding
-223 DesktopSizepseudo-encoding

Other registered encodings are:

Number Name
4 CoRRE
6 zlib
7 tight
8 zlibhex
15 TRLE
17 Hitachi ZYWRLE
18 Adam Walling XZ
19 Adam Walling XZYW
-1 to -222
-224 to -238
-240 to -256 tight options
-257 to -272 Anthony Liguori
-273 to -304 VMWare
-305 gii
-306 popa
-307 Peter Astrand DesktopName
-308 Pierre Ossman ExtendedDesktopSize
-309 Colin Dean xvp
-310 OLIVE Call Control
-311 CursorWithAlpha
-412 to -512 TurboVNC fine-grained quality level
-763 to -768 TurboVNC subsampling level
0x574d5600 to 0x574d56ff VMWare

6.6 ENCODINGS 33

6.6.1 Raw encoding

The simplest encoding type is raw pixel data. In this case the data consists ofwidth×

height pixel values (wherewidth andheight are the width and height of the rectan-
gle). The values simply represent each pixel in left-to-right scanline order. All RFB
clients must be able to cope with pixel data in this raw encoding, and RFB servers
should only produce raw encoding unless the client specifically asks forsome other
encoding type.

No. of bytes Type [Value] Description
width × height × bytesPerP ixel PIXEL array pixels

6.6 ENCODINGS 34

6.6.2 CopyRect encoding

TheCopyRect(copy rectangle) encoding is a very simple and efficient encoding which
can be used when the client already has the same pixel data elsewhere in its frame-
buffer. The encoding on the wire simply consists of an X,Y coordinate. Thisgives a
position in the framebuffer from which the client can copy the rectangle of pixel data.
This can be used in a variety of situations, the most obvious of which are when the user
moves a window across the screen, and when the contents of a window arescrolled.
A less obvious use is for optimising drawing of text or other repeating patterns. An
intelligent server may be able to send a pattern explicitly only once, and knowing the
previous position of the pattern in the framebuffer, send subsequent occurrences of the
same pattern using theCopyRectencoding.

No. of bytes Type [Value] Description
2 U16 src-x-position
2 U16 src-y-position

6.6 ENCODINGS 35

6.6.3 RRE encoding

RRE stands forrise-and-run-length encodingand as its name implies, it is essentially
a two-dimensional analogue of run-length encoding. RRE-encoded rectangles arrive at
the client in a form which can be rendered immediately and efficiently by the simplest
of graphics engines. RRE is not appropriate for complex desktops, butcan be useful
in some situations.

The basic idea behind RRE is the partitioning of a rectangle of pixel data into rect-
angular subregions (subrectangles) each of which consists of pixels of a single value
and the union of which comprises the original rectangular region. The near-optimal
partition of a given rectangle into such subrectangles is relatively easy to compute.

The encoding consists of a background pixel value,Vb (typically the most prevalent
pixel value in the rectangle) and a countN , followed by a list ofN subrectangles, each
of which consists of a tuple< v, x, y, w, h > wherev (6= Vb) is the pixel value,(x, y)
are the coordinates of the subrectangle relative to the top-left corner ofthe rectangle,
and (w, h) are the width and height of the subrectangle. The client can render the
original rectangle by drawing a filled rectangle of the background pixel value and then
drawing a filled rectangle corresponding to each subrectangle.

On the wire, the data begins with the header:

No. of bytes Type [Value] Description
4 U32 number-of-subrectangles
bytesPerP ixel PIXEL background-pixel-value

This is followed bynumber-of-subrectanglesinstances of the following structure:

No. of bytes Type [Value] Description
bytesPerP ixel PIXEL subrect-pixel-value
2 U16 x-position
2 U16 y-position
2 U16 width
2 U16 height

6.6 ENCODINGS 36

6.6.4 Hextile encoding

Hextile is a variation on the RRE idea. Rectangles are split up into 16x16tiles, al-
lowing the dimensions of the subrectangles to be specified in 4 bits each, 16 bitsin
total. The rectangle is split into tiles starting at the top left going in left-to-right, top-
to-bottom order. The encoded contents of the tiles simply follow one another inthe
predetermined order. If the width of the whole rectangle is not an exact multiple of 16
then the width of the last tile in each row will be correspondingly smaller. Similarly if
the height of the whole rectangle is not an exact multiple of 16 then the height of each
tile in the final row will also be smaller.

Each tile is either encoded as raw pixel data, or as a variation on RRE. Eachtile has
a background pixel value, as before. The background pixel value does not need to be
explicitly specified for a given tile if it is the same as the background of the previous
tile. However the background pixel value may not be carried over if the previous tile
wasRaw. If all of the subrectangles of a tile have the same pixel value, this can be
specified once as a foreground pixel value for the whole tile. As with the background,
the foreground pixel value can be left unspecified, meaning it is carriedover from the
previous tile. The foreground pixel value may not be carried over if the previous tile
had theRaw or SubrectsColouredbits set. It may, however, be carried over from a
previous tile with theAnySubrectsbit clear, as long as that tile itself carried over a
valid foreground from its previous tile.

So the data consists of each tile encoded in order. Each tile begins with asubencoding
type byte, which is a mask made up of a number of bits:

No. of bytes Type [Value] Description
1 U8 subencoding-mask:

1 Raw
2 BackgroundSpecified
4 ForegroundSpecified
8 AnySubrects
16 SubrectsColoured

If the Raw bit is set then the other bits are irrelevant;width × height pixel values
follow (wherewidth andheight are the width and height of the tile). Otherwise the
other bits in the mask are as follows:

BackgroundSpecified- if set, a pixel value follows which specifies the background
colour for this tile:

No. of bytes Type [Value] Description
bytesPerP ixel PIXEL background-pixel-value

The first non-raw tile in a rectangle must have this bit set. If this bit isn’t setthen
the background is the same as the last tile.

ForegroundSpecified- if set, a pixel value follows which specifies the foreground
colour to be used for all subrectangles in this tile:

6.6 ENCODINGS 37

No. of bytes Type [Value] Description
bytesPerP ixel PIXEL foreground-pixel-value

If this bit is set then the SubrectsColoured bit must be zero.

AnySubrects- if set, a single byte follows giving the number of subrectangles fol-
lowing:

No. of bytes Type [Value] Description
1 U8 number-of-subrectangles

If not set, there are no subrectangles (i.e. the whole tile is just solid background
colour).

SubrectsColoured- if set then each subrectangle is preceded by a pixel value giving
the colour of that subrectangle, so a subrectangle is:

No. of bytes Type [Value] Description
bytesPerP ixel PIXEL subrect-pixel-value
1 U8 x-and-y-position
1 U8 width-and-height

If not set, all subrectangles are the same colour, the foreground colour; if the
ForegroundSpecified bit wasn’t set then the foreground is the same asthe last
tile. A subrectangle is:

No. of bytes Type [Value] Description
1 U8 x-and-y-position
1 U8 width-and-height

The position and size of each subrectangle is specified in two bytes,x-and-y-position
andwidth-and-height. The most-significant four bits ofx-and-y-positionspecify the X
position, the least-significant specify the Y position. The most-significant four bits of
width-and-heightspecify the width minus one, the least-significant specify the height
minus one.

6.6 ENCODINGS 38

6.6.5 ZRLE encoding

ZRLE stands for Zlib1 Run-Length Encoding, and combines zlib compression, tiling,
palettisation and run-length encoding. On the wire, the rectangle begins with a4-byte
length field, and is followed by that many bytes of zlib-compressed data. A single zlib
“stream” object is used for a given RFB protocol connection, so that ZRLE rectangles
must be encoded and decoded strictly in order.

No. of bytes Type [Value] Description
4 U32 length
length U8 array zlibData

The zlibData when uncompressed represents tiles of 64x64 pixels in left-to-right,
top-to-bottom order, similar to hextile. If the width of the rectangle is not an exact
multiple of 64 then the width of the last tile in each row is smaller, and if the height of
the rectangle is not an exact multiple of 64 then the height of each tile in the finalrow
is smaller.

ZRLE makes use of a new typeCPIXEL (compressed pixel). This is the same as a
PIXEL for the agreed pixel format, except wheretrue-colour-flagis non-zero,bits-
per-pixel is 32, depthis 24 or less and all of the bits making up the red, green and
blue intensities fit in either the least significant 3 bytes or the most significant 3bytes.
In this case aCPIXEL is only 3 bytes long, and contains the least significant or the
most significant 3 bytes as appropriate.bytesPerCPixel is the number of bytes in a
CPIXEL.

Each tile begins with asubencoding type byte. The top bit of this byte is set if the tile
has been run-length encoded, clear otherwise. The bottom seven bits indicate the size
of the palette used - zero means no palette, one means that the tile is of a single colour,
2 to 127 indicate a palette of that size. The possible values ofsubencoding are:

0 - Raw pixel data.width × height pixel values follow (wherewidth andheight
are the width and height of the tile):

No. of bytes Type [Value] Description
width × height × bytesPerCPixel CPIXEL array pixels

1 - A solid tile consisting of a single colour. The pixel value follows:

No. of bytes Type [Value] Description
bytesPerCPixel CPIXEL pixelV alue

2 to 16- Packed palette types. Followed by the palette, consisting ofpaletteSize(=
subencoding) pixel values. Then the packed pixels follow, each pixel repre-
sented as a bit field yielding an index into the palette (0 meaning the first palette

1see http://www.gzip.org/zlib/

6.6 ENCODINGS 39

entry). ForpaletteSize 2, a 1-bit field is used, forpaletteSize 3 or 4 a 2-bit
field is used and forpaletteSize from 5 to 16 a 4-bit field is used. The bit fields
are packed into bytes, the most significant bits representing the leftmost pixel
(i.e. big endian). For tiles not a multiple of 8, 4 or 2 pixels wide (as appropri-
ate), padding bits are used to aligneach rowto an exact number of bytes.

No. of bytes Type [Value] Description
paletteSize × bytesPerCPixel CPIXEL array palette
m U8 array packedP ixels

wherem is the number of bytes representing the packed pixels. ForpaletteSize
of 2 this isfloor((width + 7)/8) × height, for paletteSize of 3 or 4 this is
floor((width+3)/4)×height, for paletteSize of 5 to 16 this isfloor((width+
1)/2) × height.

17 to 127- unused (no advantage over palette RLE).

128 - Plain RLE. Consists of a number of runs, repeated until the tile is done. Runs
may continue from the end of one row to the beginning of the next. Each run
is a represented by a single pixel value followed by the length of the run. The
length is represented as one or more bytes. The length is calculated as one more
than the sum of all the bytes representing the length. Any byte value other than
255 indicates the final byte. So for example length 1 is represented as [0],255
as [254], 256 as [255,0], 257 as [255,1], 510 as [255,254], 511 as[255,255,0]
and so on.

No. of bytes Type [Value] Description
bytesPerCPixel CPIXEL pixelV alue
floor((runLength − 1)/255) U8 array 255
1 U8 (runLength − 1)%255

129- unused

130 to 255- Palette RLE. Followed by the palette, consisting ofpaletteSize =
(subencoding − 128) pixel values:

No. of bytes Type [Value] Description
paletteSize × bytesPerCPixel CPIXEL array palette

Then as with plain RLE, consists of a number of runs, repeated until the tile is
done. A run of length one is represented simply by a palette index:

No. of bytes Type [Value] Description
1 U8 paletteIndex

6.6 ENCODINGS 40

A run of length more than one is represented by a palette index with the top bit
set, followed by the length of the run as for plain RLE.

No. of bytes Type [Value] Description
1 U8 paletteIndex + 128
floor((runLength − 1)/255) U8 array 255
1 U8 (runLength − 1)%255

6.7 PSEUDO-ENCODINGS 41

6.7 Pseudo-encodings

6.7 PSEUDO-ENCODINGS 42

6.7.1 Cursor pseudo-encoding

A client which requests theCursorpseudo-encoding is declaring that it is capable of
drawing a mouse cursor locally. This can significantly improve perceived performance
over slow links. The server sets the cursor shape by sending a pseudo-rectangle with
the Cursor pseudo-encoding as part of an update. The pseudo-rectangle’sx-position
and y-position indicate the hotspot of the cursor, andwidth and height indicate the
width and height of the cursor in pixels. The data consists ofwidth × height pixel
values followed by a bitmask. The bitmask consists of left-to-right, top-to-bottom
scanlines, where each scanline is padded to a whole number of bytesfloor((width +
7)/8). Within each byte the most significant bit represents the leftmost pixel, with a
1-bit meaning the corresponding pixel in the cursor is valid.

No. of bytes Type [Value] Description
width × height × bytesPerP ixel PIXEL array cursor-pixels
floor((width + 7)/8) ∗ height U8 array bitmask

6.7 PSEUDO-ENCODINGS 43

6.7.2 DesktopSize pseudo-encoding

A client which requests theDesktopSizepseudo-encoding is declaring that it is capable
of coping with a change in the framebuffer width and/or height. The serverchanges
the desktop size by sending a pseudo-rectangle with theDesktopSizepseudo-encoding
as the last rectangle in an update. The pseudo-rectangle’sx-positionandy-positionare
ignored, andwidth andheight indicate the new width and height of the framebuffer.
There is no further data associated with the pseudo-rectangle.

