Perl One-lliners
Explained

by

Q@Qpkrumins
Peteris Krumins
peter@Qcatonmat.net
http:/ /www.catonmat.net
good coders code, great reuse

http://twitter.com/pkrumins
mailto:peter@catonmat.net
http://www.catonmat.net

Contents

Contents

Preface

1

2

3

Introduction
1.1 Perl One-Liners

Spacing

2.1 Double space afile
2.2 Double space a file, except the blank lines
2.3 Triplespaceafile
24 N-spaceafileo o
2.5 Add a blank line before every line
2.6 Remove all blank lines
2.7 Remove all consecutive blank lines, leaving just one
2.8 Compress/expand all blank lines into N consecutive ones . .
2.9 Double space all words
2.10 Remove all spacing between words
2.11 Change all spacing between words to one space
2.12 Insert a space between each character

Numbering

3.1 Number all linesinafile

3.2 Number only non-empty linesinafile.

3.3 Number and print only non-empty lines in a file

3.4 Number all lines but print line numbers for only non-empty
lines

3.5 Number only lines that match a pattern, print others un-
modified

vi

— =

co o O

Ne}

10
11
12
13
13
13
14
14

CONTENTS i

3.6 Number and print only lines that match a pattern 17
3.7 Number all lines, but print line numbers only for lines that
match a pattern Lo 17
3.8 Number all lines in a file using a custom format 17
3.9 Print the total number of lines in a file (emulate we -1) . . . 18
3.10 Print the number of non-empty linesin a file 19
3.11 Print the number of empty linesinafile 20
3.12 Print the number of lines in a file that match a pattern . . . 21
3.13 Number words across all lines 21
3.14 Number words on each line individually 21
3.15 Replace all words with their numeric positions 22
4 Calculations 23
4.1 Check if a number is a prime L. 23
4.2 Print the sum of all the fieldsonaline 24
4.3 Print the sum of all the fields on all lines 25
4.4 Shuffle all fields of every line 25
4.5 Find the minimum element on every line 27
4.6 Find the minimum element over all the lines 27
4.7 Find the maximum element on a line 28
4.8 Find the maximum element over all the lines 28
4.9 Replace each field with its absolute value 29
4.10 Find the total number of fields (words) on each line 29
4.11 Print the total number of fields (words) on each line followed
by theline o 29
4.12 Find the total number of fields (words) on all lines. 30
4.13 Print the total number of fields that match a pattern 30
4.14 Print the total number of lines that match a pattern 31
4.15 Print the number PI to n decimal places 31
4.16 Print the number E to n decimal places 31
4.17 Print UNIX time (seconds since Jan 1, 1970, 00:00:00 UTC) 32
4.18 Print GMT (Greenwich Mean Time) and local computer time 32
4.19 Print yesterday’s date 34
4.20 Print date 14 months, 9 days and 7 seconds ago 34
4.21 Calculate factorial oL 35
4.22 Calculate greatest common divisor 35
4.23 Calculate least common multiple 36
4.24 Generate 10 random numbers between 5 and 15 (excluding 15) 37

CONTENTS

111

4.25
4.26
4.27
4.28

5.1
5.2
2.3
5.4
2.5
2.6
5.7
2.8
2.9
5.10
5.11
0.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Find and print all permutations of a list
Generate the powerset
Convert an IP address to unsigned integer
Convert an unsigned integer to an IP address . . .

String Creation and Array Creation

Generate and print the alphabet
Generate and print all the strings from "a" to "zz"

Create a hex lookup table
Generate a random 8 character password
Create a string of specific length
Create an array from a string
Create a string from an array
Find the numeric values for characters in a string .
Convert a list of numeric ASCII values into a string
Generate an array with odd numbers from 1 to 100

Generate an array with even numbers from 1 to 100.

Find the length of the string
Find the number of elements in an array

Text Conversion and Substitution

ROT13 astring.
Base64 encode a string L.
Base64 decode a string
URL-escape astring
URL-unescape a string
HTML-encode a string
HTML-decode a string
Convert all text to uppercase
Convert all text to lowercase
Uppercase only the first word of each line.
Invert the letter case
Camel case each line

Strip leading whitespace from the beginning of each line

Strip trailing whitespace from the end of each line .

Strip whitespace from the beginning and end of each line . .

Convert UNIX newlines to DOS/Windows newlines
Convert DOS/Windows newlines to UNIX newlines

37
38
39
40

42
42
43
43
44
45
45
46
46
47
47
48
48
48

CONTENTS iv

6.18 Convert UNIX newlines to Mac newlines o7
6.19 Substitute (find and replace) "foo" with "bar" on each line . 57
6.20 Substitute "foo" with "bar" on lines that match "baz" . . . 57
6.21 Reverse paragraphsinafile 58
6.22 Reverse all lines 58
7 Selective Printing and Deleting of Lines 60
7.1 Print the first line of a file (emulate head -1) 60
7.2 Print the first 10 lines of a file (emulate head -10) 60
7.3 Print the last line of a file (emulate tail -1) 61
7.4 Print the last 10 lines of a file (emulate tail -10) 62
7.5 Print only lines that match a regular expression 62
7.6 Print only lines that do not match a regular expression . . . 63

7.7 Print the line before a line that matches a regular expression 63
7.8 Print the line after a line that matches a regular expression . 64
7.9 Print lines that match regex AAA and regex BBB in any order 64
7.10 Print lines that don’t match match regexes AAA and BBB . 64
7.11 Print lines that match regex AAA followed by BBB and CCC 65

7.12 Print lines that are 80 chars or longer 65
7.13 Print lines that are less than 80 chars in length 65
7.14 Print only line 13 66
7.15 Print all lines except line 27 66
7.16 Print only lines 13, 19 and 67 66
7.17 Print all lines between two regexes 67
7.18 Print all lines from line 17 to line 30 67
7.19 Print the longest line 67
7.20 Print the shortest line 68
7.21 Print all lines that contain a number 68
7.22 Find all lines that contain only a number 68
7.23 Print all lines that contain only characters 69
7.24 Print every second line 69
7.25 Print every second line, starting the second line. 69
7.26 Print all lines that repeat 70
7.27 Print all unique lines 70
8 Handy Regular Expressions 71
8.1 Match something that looks like an IP address 71

8.2 Test if a number is in range 0-255 71

CONTENTS v
8.3 Match an IP address 72
8.4 Check if the string looks like an email address 72
8.5 Check if the string is a decimal number 73
8.6 Check if a word appears twice in the string 75
8.7 Increase all numbers by one in the string 75
8.8 Extract HT'TP User-Agent string from the HT'TP headers 75
8.9 Match printable ASCII characters 76
8.10 Match text between two HTML tags 76
8.11 Replace all tags with 7
8.12 Extract all matches from a regular expression 7

9 perllline.txt 78

A Perl’s Special Variables 93
A1 Variable $ 93
A2 Variable $. 96
A.3 Variables $1, $2, 83, 97
A4 Variable §/o 98
A5 Variable $\ o 99
A6 Variable $, 99
A7 Variable $" 100
A.8 Variable @QF 100
A.9 Variable QARGV 101
A.10 Variable %XENV 102

Index 103

Preface

Thanks!

Thank you for buying my "Perl One-Liners Explained" e-book! This is
my third e-book and I based it on the "Famous Perl One-Liners Explained"
article series that I wrote on my www.catonmat.net blog. I went through all
the one-liners in the articles, improved explanations, fixed a lot of mistakes
and typos, added a bunch of new one-liners, added an Introduction to Perl
one-liners and a new chapter on Perl special variables.

You might wonder why I called the article series that I based the book
on "famous"? It’s because I based this article series on two similar article
series about awk and sed that I had written in the past. These article
series are "Famous Awk One-Liners Explained" and "Famous Sed One-
Liners Explained". Now why did I call these series "famous"? Well, because
I based the articles on the popular awklline.txt and sedlline.txt files by
Eric Pement. These files have been circulating around Unix newsgroups
and forums for years and they’re very popular among Unix programmers
and sysadmins. That’s how I actually really learned awk and sed myself. I
went through all the one-liners in those files, tried them out and endeavored
to understand exactly how they work. Then I decided that it would be a
good idea to explain them on my blog, which I did, and after that I thought,
why not create my own perllline.txt file. So I did. I also included this file
in the e-book as Chapter 9.

As T mentioned, this is my third e-book. My first e-book is "Awk One-
Liners Explained" and my second e-book is "Sed One-Liners Explained."
All these e-books are written in the same style, so if you enjoy this e-book,
you’ll also enjoy the other two!

I have planned writing many more e-books. The next few are going to
be the catonmat book, a practical guide to vim, and a practical guide to
anonymity. If you're interested, subscribe to my blog, follow me on Twitter
or follow me on Google+. That way you’ll be the first to know when I
publish it!

Enjoy!

vi

http://www.catonmat.net/blog/perl-one-liners-explained-part-one/
http://www.catonmat.net/
http://www.catonmat.net/blog/awk-one-liners-explained-part-one/
http://www.catonmat.net/blog/sed-one-liners-explained-part-one/
http://www.catonmat.net/blog/sed-one-liners-explained-part-one/
http://www.pement.org/awk/awk1line.txt
http://www.pement.org/sed/sed1line.txt
http://www.pement.org/
http://www.catonmat.net/download/perl1line.txt
http://www.catonmat.net/blog/awk-book/
http://www.catonmat.net/blog/awk-book/
http://www.catonmat.net/blog/sed-book/
http://www.catonmat.net/feed/
http://twitter.com/pkrumins
http://google.com/profiles/peteris.krumins

One

Introduction

1.1 Perl One-Liners

Perl one-liners are small and awesome Perl programs that fit in a single line
of code and they do one thing really well. These things include changing
line spacing, numbering lines, doing calculations, converting and substi-
tuting text, deleting and printing certain lines, parsing logs, editing files
in-place, doing statistics, carrying out system administration tasks, updat-
ing a bunch of files at once, and many more. Perl one-liners will make you
the shell warrior. Anything that took you minutes to solve, will now take
you seconds!

Let’s look at several examples to get more familiar with one-liners. Here
is one:

perl -pi -e 's/you/me/g' file

This one-liner replaces all occurrences of the text you with me in the file
file. Very useful if you ask me. Imagine you are on a remote server and
have this file and you need to do the replacement. You can either open it
in text editor and execute find-replace or just do it through command line
and, bam, be done with it.

The -e argument is the best argument. It allows you to specify the Perl
code to be executed right on the command line. In this one-liner the code
says, do the substitution (s/.../.../ command) and replace you with me
globally (/g flag). The -p argument makes sure the code gets executed on
every line, and that the line gets printed out after that. The -i argument
makes sure that file gets edited in-place, meaning Perl opens the file,
executes the substitution for each line, and puts it back in the file.

Don’t worry too much about the command line arguments right now,
you’ll learn all about them as you work through the book!

How about doing the same replacement in multiple files? Just specify
them on the command line!

CHAPTER 1. INTRODUCTION 2

perl -pi -e 's/you/me/g' filel file2 file3

Now let’s do the same replacement only on lines that match we? It’s as
simple as this:

perl -pi -e 's/you/me/g if /we/' file

Here we use the conditional if /we/. This makes sure that s/you/me/g
gets executed only on lines that match the regular expression /we/. The
regular expression here can be anything. Let’s say you want to execute the
substitution only on lines that have digits on them. You can then use the
/\d/ regular expression that matches numbers:

perl -pi -e 's/you/me/g if /\d/' file
Now how about finding all repeated lines in a file?
perl -ne 'print if $a{$_}++' file

This one-liner records the lines seen so far in the %a hash and keeps
the counter of how many times it has seen the lines. The $a{$_}++ creates
elements in the %a hash automagically. When it sees a repeated line, the
value of that hash element is greater than one, and if $a{$_} is true, so
it prints the line. This one-liner also uses the -n command line argument
that loops over the input but unlike -p doesn’t print the lines automatically.
You’ll find much more detailed description of -n in the first chapter of the
book.

How about numbering lines? Super simple! Perl has the $. special
variable that maintains the current line number. You can just print it out
together with the line:

perl -ne 'print "$. $_"'

You can also achieve the same by using -p argument and modifying the
$_ variable:

perl -pe '$_ = "$. $_ "'

CHAPTER 1. INTRODUCTION 3

Here each line gets replaced by the string "$. $_", which is the current
line number followed by the line itself. See 3.1 for a full explanation of this
one-liner.

How about we combine the previous two one-liners and create one that
numbers repeated lines? Here we go:

perl -ne 'print "$. $_" if $a{$_}++'

Now let’s do something different. Let’s sum up all the numbers in each
line. We’ll use the sum function from the List::Util CPAN module. You
can install it as easily as running perl -MCPAN -e’install List::Util’.

perl -MList::Util=sum -alne 'print sum @F'

The -MList::Util command line argument imports the List::Util
module, and the =sum part of it imports the sum function from it. Next
-a enables automatic splitting of fields into the @F array. The -1 argument
makes sure that print outputs a newline at the end of each line. Finally
the sum @F sums up all the elements in the @F list and print prints it out,
followed by a newline (that was added by the -1 argument). This one-liner
is explained in more details in section 4.2.

How about finding the date 1299 days ago? That’s also solvable by a
simple one-liner:

perl -MPOSIX -le '
@now = localtime;
$now[3] -= 1299;
print scalar localtime mktime @now

This one-liner didn’t quite fit in one line, but that’s just because this
book has large margins. I explain this example in great detail in one-
liner 4.19. Basically we modify the 4th element of the structure returned
by localtime, which happens to be days. So we just subtract 1299 days
from the current day. Then we reassembles it into a new time through
localtime mktime @now and print it in scalar context that prints human

readable time. This one-liner is explained in more details in sections 4.18,
4.19 and 4.20.

CHAPTER 1. INTRODUCTION 4

How about generating an 8 letter password? Again, solvable elegantly
with a one-liner:

perl -le 'print map { (a..z)[rand 26] } 1..8'

The a..z generates a list of letters from a to z (total 26). Then we
randomly choose one of them, and we repeat it 8 times! This example is
explained in much more detail in one-liner 5.4.

Here is another one. Suppose you want to quickly find the decimal
number that corresponds to an IP address. You can use the unpack function
and find it really quickly:

perl -le 'print unpack("N", 127.0.0.1)'

This one-liner uses a vstring, which is a version literal. The IP address
127.0.0.1 is treated as a vstring, which is basically the numbers 127, 0, 0, 1
concatenated together. Next the unpack function unpacks them to a single
decimal number. A much more detailed explanation is given in one-liner
4.27.

Now how about calculations? Let’s find the sum of the numbers in the
first column:

perl -lane '$sum += $F[0]; END { print $sum }'

Here the lines automatically get split up into fields through the -a ar-
gument. The fields can be now accessed through the @F array. The first
element of the array, $F[0], is the first column. So all we have to do is sum
all the columns up through $sum += $F[0]. When the Perl program ends
its job, it executes any code in the special END block. In this case we print
out the total sum there. Really easy!

Now let’s find out how many packets have gone through all the iptables
rules. It’s this simple:

iptables -L -nvx | perl -lane '
$_ = $F[0]; $pkts += $_ if /~\d/; END { print $pkts }

CHAPTER 1. INTRODUCTION)

The iptables program outputs the packets as the first field. All we do
is check if the first field is numeric (because it also outputs label header),
and if so, sum the packets up, just like in the previous one-liner.

How about getting a list of the names of all users on the system?

perl -a -F: -lne 'print $F[4]' /etc/passwd

Combining -a with -F argument allows you to specify the character that
lines should be split on. In this case it’s the column, which is the record
separator of /etc/passwd. Next we just print the 5th field $F[4], which is
the real name of the user. Really quick and easy.

As you can see, knowing Perl one-liners lets you accomplish many tasks
quickly. Overall this e-book has 130 unique one-liners, which will let you
become the shell wizard. Many one-liners are presented in several different
ways so the total number of one-liners in this book is over 200. Enjoy!

Two

Spacing

2.1 Double space a file

per'l- _pe I$\=II\nII 1

This one-liner double spaces a file. There are three things to explain in
this one-liner. The -p and -e command line options, and the $\ variable.

First let’s start with the -e option. The -e option can be used to enter
a Perl program directly in the command line. Typically you don’t want to
create source files for every small program. With -e you can easily write
the program right in the command line as a one-liner.

Next the -p switch. Specifying -p to a Perl program causes it to assume
the following loop around your program:

while (<>) {

your program goes here (specified by -e)
} continue {

print or die "-p failed: $'!'\n";

Broadly speaking, this construct loops over all the input, executes your
code and prints the value of $_. This way you can quickly modify all or
some lines of the input. The $_ variable can be explained as an anonymous
variable that gets filled with the current line of text. (You’ll see later that
it can be filled with other stuff as well.).

However, it’s important to understand what is going on in this loop in
more details. First the while (<>) loop takes each line from the standard
input and puts it in the $_ variable. Next the code specified by -e gets exe-
cuted. Then the print or die part gets executed. The continue statement
executes the print or die statement after each line. The print or die
tries to print the contents of the $_ variable. If it fails (for example, the

This is a preview copy (first 13 pages)

Get the full e-book at:

www.catonmat.net/blog/perl-book/

